Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Main protease (Mpro) and Spike (S) proteins are said potential drug targets of COVID-19. Pneumonia like respiratory illness caused by SARS-CoV-2 is spreading rapidly due to its replication and transmission rate. Protease is the protein that is involved in both replication and transcription. Since CoV-2 shares, genomic similarity with CoV and MERS-CoV, drugs from previous outbreaks are used as primary treatment of the disease. In-silico drug development strategies are said to be faster and effective than in-vitro with a lesser amount of risk factors. Fragment Based Drug Designing (FBDD), also known as rational drug design in which a potential target protein is selected and docked with a lead-like molecule that eventually leads to drug development. Nine (9) drugs that are currently being used to treat patients of coronavirus were selected in this study from the latest literature review and fragmented as per rules followed by crosslinking of drug fragments using editor tools. These native drugs and synthesized drugs were then docked against the main protease. Results of the study revealed that one of the crosslinked lead-like compounds showed a higher binding affinity (∆G) more than any of the native compounds. Further, the results of this study suggested that the combination of potential drugs can be an effective way to develop new drugs to treat a deadly disease.
Main protease (Mpro) and Spike (S) proteins are said potential drug targets of COVID-19. Pneumonia like respiratory illness caused by SARS-CoV-2 is spreading rapidly due to its replication and transmission rate. Protease is the protein that is involved in both replication and transcription. Since CoV-2 shares, genomic similarity with CoV and MERS-CoV, drugs from previous outbreaks are used as primary treatment of the disease. In-silico drug development strategies are said to be faster and effective than in-vitro with a lesser amount of risk factors. Fragment Based Drug Designing (FBDD), also known as rational drug design in which a potential target protein is selected and docked with a lead-like molecule that eventually leads to drug development. Nine (9) drugs that are currently being used to treat patients of coronavirus were selected in this study from the latest literature review and fragmented as per rules followed by crosslinking of drug fragments using editor tools. These native drugs and synthesized drugs were then docked against the main protease. Results of the study revealed that one of the crosslinked lead-like compounds showed a higher binding affinity (∆G) more than any of the native compounds. Further, the results of this study suggested that the combination of potential drugs can be an effective way to develop new drugs to treat a deadly disease.
Since the advent of the twentieth century, several severe virus outbreaks have occurred—H1N1 (1918), H2N2 (1957), H3N2 (1968), H1N1 (2009) and recently COVID-19 (2019)—all of which have posed serious challenges to public health. Therefore, rapid identification of efficacious antiviral medications is of ongoing paramount importance in combating such outbreaks. Due to the long cycle of drug development, not only in the development of a “safe” medication but also in mandated and extensive (pre)clinical trials before a drug can be safely licensed for use, it is difficult to access effective and safe novel antivirals. This is of particular importance in addressing infectious disease in appropriately short period of time to limit stress to ever more interlinked societal infrastructures; including interruptions to economic activity, supply routes as well as the immediate impact on health care. Screening approved drugs or drug candidates for antiviral activity to address emergent diseases (i.e. repurposing) provides an elegant and effective strategy to circumvent this problem. As such treatments (in the main) have already received approval for their use in humans, many of their limitations and contraindications are well known, although efficacy against new diseases must be shown in appropriate laboratory trials and clinical studies. A clear in this approach in the case of antivirals is the “relative” simplicity and a high degree of conservation of the molecular mechanisms that support viral replication—which improves the chances for a functional antiviral to inhibit replication in a related viral species. However, recent experiences have shown that while repurposing has the potential to identify such cases, great care must be taken to ensure a rigourous scientific underpinning for repurposing proposals. Here, we present a brief explanation of drug repurposing and its approaches, followed by an overview of recent viral outbreaks and associated drug development. We show how drug repurposing and combination approaches have been used in viral infectious diseases, highlighting successful cases. Special emphasis has been placed on the recent COVID-19 outbreak, and its molecular mechanisms and the role repurposing can/has play(ed) in the discovery of a treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.