This contribution presents 4 Â 4 matrices for generalized ellipsometry analysis of dielectric helical thin films within the algebraic framework for arbitrary anisotropic layered samples. Liquid crystal and solid-state material optical properties are used to demonstrate dielectric helical thin film examples, at visible and infrared wavelengths, respectively. A new optical resonance band, located between the A 1 and E 1 TO mode, is observed for an a-plane wurtzite film when the c-axis is twisted along the growth direction. The solution given here will open up new avenues for precise ellipsometry characterization of rotationally inhomogeneous media with symmetric dielectric tensor properties such as chiral liquid crystals, sculptured thin films, or helically arranged organic materials.