2020
DOI: 10.48550/arxiv.2002.01125
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Selective Segmentation Networks Using Top-Down Attention

Abstract: Convolutional neural networks model the transformation of the input sensory data at the bottom of a network hierarchy to the semantic information at the top of the visual hierarchy. Feedforward processing is sufficient for some object recognition tasks. Top-Down selection is potentially required in addition to the Bottom-Up feedforward pass. It can, in part, address the shortcoming of the loss of location information imposed by the hierarchical feature pyramids. We propose a unified 2-pass framework for object… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?