A simple, rapid, and low‐cost technique was developed to allow reliable analysis of the anti‐hepatitis C drug sofosbuvir in bulk, tablet form, and spiked human plasma. This method depends on the ability of sofosbuvir to quench the fluorescence of the newly synthesized 2‐amino‐3‐cyano‐4,6‐dimethylpyridine (reagent 3). Elemental analysis and spectral data were used to validate the structure of the synthesized reagent. The newly synthesized reagent exhibited a satisfactory level of fluorescence emission at 365 nm after excitation at 247 nm. All experimental variables that might affect the quenching process were analyzed and optimized. Linearity, range, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ) were all validated in accordance with the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines. The concentration range was shown to be linear between 0.1 and 1.5 μg/mL. The technique was effectively utilized for sofosbuvir analysis in both its tablet dosage form and spiked human plasma, with mean percentage recoveries of 100.13 ± 0.35 and 94.26 ± 1.69, respectively.