A transport process was studied from an aqueous solution containing oxalic acid and 100 mg/L Ge using a flat sheet supported liquid membrane (FSSLM) system. Cyanex 923 immobilized in a polytetrafluoroethylene membrane was employed as a carrier. The solution chemistry and related diagrams were applied to study the transport of germanium. The effectual parameters such as oxalic acid, carrier concentration, and strip reagent composition were evaluated in this study. Based on the results, the oxalic acid concentration of 0.075 mol/L and the carrier concentration of 20 %v/v were the condition in which the efficient germanium transport occurred. Among strip reagents, NaOH (0.04-0.1 mol/L) had the best efficiency to transport germanium through the SLM system. Furthermore, the permeation model was obtained to calculate the mass transfer resistances of the membrane (Δm) and feed (Δf) phases. According to the results, the values of 1 and 1345 s/cm were evaluated for Δm and Δf, respectively.