2014
DOI: 10.48550/arxiv.1403.5826
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Selectivity on division algebras

Abstract: A commutative order in a central simple algebra over a number field is said to be selective if it embeds in some, but not all, maximal orders in the algebra. We completely characterize selective orders in central division algebras, of dimension 9 or greater, in terms of the characterization of selective orders given by Chindburg and Friedman in the quaternionic case.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?