The essential trace mineral, Se, is of fundamental importance to human health. As a constituent of selenoproteins it plays both structural and enzymic roles, in the latter context being best known as an antioxidant and catalyst for the production of active thyroid hormone. While Se-deficiency diseases have been recognised for some time, evidence is mounting that less-overt deficiency can also cause adverse health effects and furthermore, that supra-nutritional levels of Se may give additional protection from disease. In the context of these effects, low or diminishing Se status in some parts of the world, notably in some European countries such as the UK, is giving cause for concern. While deficiency has an adverse effect on immunocompetence, Se supplementation appears to enhance the immune response. Se appears to be a key nutrient in counteracting certain viral infections; thus, in a Se-deficient host the benign coxsackie virus becomes virulent, causing heart damage, the influenza virus causes more serious lung pathology and HIV infection progresses more rapidly to AIDS. Long recognised as essential for successful animal reproduction, Se is required for human sperm maturation and sperm motility and may reduce the risk of miscarriage. Deficiency has been linked to adverse mood states. Findings have been equivocal in linking Se to cardiovascular disease risk, although other conditions involving oxidative stress and inflammation have shown some association with Se status. There is growing evidence that higher Se intakes are associated with reduced cancer risk. While persuasive evidence already exists to suggest that additional Se would be beneficial in some health conditions, results from intervention trials underway or planned have the potential to reinforce or refute the argument for increasing Se intake.