Determination of wool mineral content to assess the animal’ mineral status has been extensively used, but the results are controversial. One of the possible contributing factors is that the sampling material in previous studies was collected from a long staple, a fact that could mask the response to recent differences in mineral intake. Therefore, the aim of the present study was to test the sensitiveness of newly grown wool to different dietary mineral intake. Twenty Tsigai ewes were allocated into five dietary treatments with similar hay and concentrate intake but different premix inclusion rates in the concentrate (3, 4, 5, 6, and 7%). Wool was sampled on the left side from a 5 × 5 cm area using bent scissors at the beginning of the trial and from the very same area 28 days later. Samples after cleaning and mineralization were analyzed with ICP-OES (Perkin-Elmer, Optima 3300 DV) for calcium, phosphorus, magnesium, sodium, selenium, zinc, copper, and sulfur content. Long fleeces had significantly lower Ca and Se content compared to the newly grown wool samples of the group at the premix manufacturer’s suggested level of supplementation (5%). Macrominerals in fresh wool did not respond to increased dietary supplementation. Se and Zn content of wool had a strong relationship with the daily intake (R2 = 0.95 and R2 = 0.97, respectively.) In conclusion, the mineral content of long fleeces can be different compared to recently developed wool fiber. This indicates that, in some cases, analyzing long staples for mineral status can be misleading. Our results showed that wool could be a sensitive indicator of low selenium and high zinc intake. Mineral interactions can significantly affect the actual availability of trace minerals; therefore, a more careful design of premixes is needed. The described method seems to be applicable in livestock farming, but the mineral interactions that may alter the results need to be further explored.