In both aquatic and terrestrial environment, selenium contamination may exist at concentrations above the micronutrient limit. Since there is such a narrow bandwidth between which selenium concentration is acceptable, the health of the public may be at risk of selenium toxicity once the concentration increases beyond a threshold. Selenium contamination in an aqueous environment can occur due to anthropogenic activities and/or from natural sources. This study presents a review of the forms of selenium, inorganic and organic selenium contamination, mobilization, analytical methods for various forms of selenium and remediation strategies. The review also provides recent advances in removal methods for selenium from water including bioremediation, precipitation, coagulation, electrocoagulation, adsorption, nano-zerovalent iron, iron co-precipitation and other methods. A review of selenomethionine and selenocysteine removal strategy from industrial wastewaters is presented. Selenium resource recovery from copper ore processing has been discussed. Various analytical methods used for selenium and heavy metal analysis were compared. Importantly, existing knowledge gaps were identified and prospective areas for further research were recommended.