This editorial shortly summarizes the highlights described in the Forum, novelties about selenoproteins. Two articles describe the selenoprotein biosynthesis and the role of so far identified proteins involved, including that of selenocysteine-β-lyase, which also may link selenoproteins to energy metabolism. Novel and, in part, unexpected functions are reviewed. Thioredoxin reductase 1 (TrxR1) can change from an anti- to a pro-oxidant and appears to be involved in the regulation of the Nrf2/Keap1 system. Methionine sulfoxide reductase B1 (MsrB1) catalyzes a novel posttranslational protein modification. The membrane proteins, Sel K,S,T,N, and I, form selenylsulfide bonds leading to the formation and stabilization of protein complexes required for protein trafficking. By this mechanism, selenoprotein K (SelK) supports palmitoylation of membrane-associated proteins. Thus, selenium and selenoproteins obviously have functions by far exceeding that of counteracting oxidative stress and even also catalyzing oxidoreductive processes.