Powerful incoherent laser pulses can propagate in focusing Kerr media much longer distances than can coherent pulses, due to the fast phase mixing that prevents transverse filamentation. This distance is limited by 4-wave scattering, which accumulates waves at small transverse wavenumbers, where phase mixing is too slow to retain the incoherence and thus prevent the filamentation. However, we identify how this theoretical limit can be overcome by countering this accumulation through transverse heating of the pulse by random fluctuations of the refractive index. In these new regimes, the laser pulse propagation distances are significantly extended, making feasible a new class of random lasers, in particular, ultra-powerful random lasers in plasmas.