Development of soft chemical processes for the synthesis of interfacial architectures with well-defined structural nano-motifs organized over large areas in two dimensions is an important branch of nanotechnology. The present study deals with the fabrication of gold nanostructures using size-selective chemical etching of continuous gold films on glass support with titanium and chromium adhesive layers. In this process, which is called self-passivated surface etching, a gold film is etched in the presence of citric acid, resulting in gold nanostructures adhering to the metal support. The size-controlled chemical dissolution of gold is driven by a competing reaction between self-organized passivation of surface nano-motifs by citric acid shells and soft etching by a nonoxidative composition containing hydrochloric acid and hydrogen peroxide in water. According to these results, the presence of a chemically stable adhesive layer (titanium), citric acid in solution, and agitation are critical factors to be considered. However, the nature of the adhesive layer is the most influential factor. The following technique presents a simple method for the rapid fabrication of a nanostructured gold substrate that has the ability to support both propagating and localized surface plasmon resonances simultaneously.