Assembly of 2D MXene sheets into a 3D macroscopic architecture is highly desirable to overcome the severe restacking problem of 2D MXene sheets and develop MXene-based functional materials. However, unlike graphene, 3D MXene macroassembly directly from the individual 2D sheets is hard to achieve for the intrinsic property of MXene. Here a new gelation method is reported to prepare a 3D structured hydrogel from 2D MXene sheets that is assisted by graphene oxide and a suitable reductant. As a supercapacitor electrode, the hydrogel delivers a superb capacitance up to 370 F g −1 at 5 A g −1 , and more promisingly, demonstrates an exceptionally high rate performance with the capacitance of 165 F g −1 even at 1000 A g −1 . Moreover, using controllable drying processes, MXene hydrogels are transformed into different monoliths with structures ranging from a loosely organized porous aerogel to a dense solid. As a result, a 3D porous MXene aerogel shows excellent adsorption capacity to simultaneously remove various classes of organic liquids and heavy metal ions while the dense solid has excellent mechanical performance with a high Young's modulus and hardness.