In order to probe the nanoparticle shape/size effect on cellular uptake, a spherical and two cylindrical nanoparticles, whose lengths were distinctively varied, were constructed by the selective crosslinking of amphiphilic block copolymer micelles. Herein, we demonstrate that, when the nanoparticles were functionalized with the protein transduction domain of human immunodeficiency virus type 1 Tat protein (HIV Tat PTD), the smaller, spherical nanoparticles had a higher rate of cell entry into Chinese Hamster Ovary (CHO) cells than did the larger, cylindrical nanoparticles. It was also found that nanoparticles were released after internalization, and that the rate of cell exit was dependent on both the nanoparticle shape and the amount of surface-bound PTD.