The poor solubility of berberine (Ber) in water limits its practical use. Its solubility can be increased, among other ways, by the addition of surfactants. Of the surfactants, Kolliphor® ELP (ELP) and Kolliphor® RH 40 (RH40) can be very useful in this respect. The increase of Ber’s solubility in water in the presence of ELP and RH40 should be reflected in the composition of the surface layers at the water-air interface and the micelles. The determined composition is reflected in the Gibbs energy of interactions of berberine with ELP and RH40 through the water phase and the standard Gibbs free energy, enthalpy, and entropy of adsorption and micellization. These energies were determined from the equations proposed by us, based on the Gibbs surface excess concentration of the Ber mixture with ELP and RH40, the activity of these compounds in the surface layer at the water-air interface and in the micelles obtained by the Hua and Rosen method, and the contributions of Ber, ELP, and RH40 to the reduction in the water surface tension. For this determination, the measurements of the surface tension of the aqueous solution of the Ber mixture with ELP or RH40 and that of the Ber mixture with these two surfactants, as well as the density and conductivity were performed. Moreover, the fluorescence emission spectra for the Ber + surfactant mixtures were recorded.