In this paper, a series of P(NIPAM-co-AA)/Clay composite hydrogels (abbreviated as NAC gels) with high swelling ratio and excellent mechanical strength were synthesized and characterized by DMA, SEM, and IR. In NAC gels composed of a unique organic P(NIPAM-co-AA)/ inorganic (clay) network, the inorganic clay acts as a multifunctional cross-linker in place of an organic cross-linker as used in the conventional chemically cross-linked hydrogels (abbreviated as OR gels). The NAC gels exhibit excellent swelling ratio, and there was no detectable change in properties on altering the concentration of clay, while the swelling ratio tends to decrease slightly when C clay increases up to 25 wt%, which was revealed in swelling measurements. IR spectra show that clay has been intercalated by copolymers. Furthermore, results of DMA reveal that the composite hydrogel has an excellent mechanical strength by using a wide range of clay concentration, while the moduli improve with increasing C clay .