The incorporation of rare-earth ions into polymer matrices can lead to useful materials in various fields such as biomarkers, lasers, luminescent devices, optical storage materials, and so on. Methods of incorporation are either extremely simple, such as mixing the polymer and the ion of interest in adequate solvents, or more sophisticated such as synthesizing predesigned monomers that contain the rare-earth ion or binding the ion on an already formed polymer chain. Cationic gemini surfactants represent a class of surfactants that can be used to incorporate metal-oxygen cluster compounds by means of strong electrostatic interactions. In this study, first, a novel cationic gemini surfactant having double bonds on both side chains was designed and prepared. After characterization, the surfactant was used to synthesize hydrogels with different degrees of crosslinking and also as a surfmer in emulsion polymerization of methyl methacrylate. The resulted polymer matrices were able to bind europium-polyoxometalate Na9[EuW10O36].32H2O. In case of luminescent lanthanide ions, changing the microenvironment around the metal ion also changes the intensity of some emission peaks as well as other luminescent parameters. Investigation of emission spectra of Eu3+ indicates a decrease in the symmetry of the microenvironment, when the polyanions pass from water to latex, to surfactant solution, and to hydrogel.