Homopeptides with 2, 3 and 4 phenylalanine (Phe) residues and capped with fluorenylmethoxycarbonyl and fluorenylmethyl ester at the N-and C-terminus, respectively, have been synthesized to examine their self-assembly capabilities.Depending on the conditions, the di-and triphenylalanine derivatives self-organize into a wide variety of stable polymorphic structures, which have been characterized: stacked braids, doughnuts-like, bundled arrays of nanotubes, corkscrew-like and spherulitic microstructures. These highly aromatic Phe-based peptides also form incipient branched dendritic microstructures, even though they are highly unstable, making their manipulation very difficult. In opposition, the tetraphenylalanine derivative spontaneously self-assemble into stable dendritic microarchitectures made of branches growing from nucleated primary frameworks. The fractal dimension of these microstructures is 1.70, which evidences self-similarity and two-dimensional diffusion controlled growth. DFT calculations at the M06L/6-31G(d) level have been carried out on model -sheets since it is the most elementary building block of Phe-based peptide polymorphs. Results indicate that the antiparallel -sheet is more stable than the parallel one, the difference between them growing with the number of Phe residues. Thus, the cooperative effects associated with the antiparallel disposition become more favorable when the number of Phe residues increases from 2 to 4, while those of the parallel disposition remained practically constant.3