The misuse of antibiotics contributes to the emergence of multidrug-resistant (MDR) bacteria. Infections caused by MDR bacteria are rapidly evolving into a significant threat to global healthcare due to the lack of effective and safe treatments. Antimicrobial peptides (AMPs) with broadspectrum antibacterial activity kill bacteria generally through a membrane disruption mechanism; hence, they tend not to induce resistance readily. However, AMPs exhibit disadvantages, such as high cost and susceptibility to proteolytic degradation, which limit their clinical application. AMP-mimetic antimicrobial polymers, with low cost, stability to proteolysis, broad-spectrum antimicrobial activity, negligible antimicrobial resistance, and rapid bactericidal effect, have received extensive attention as a new type of antibacterial drugs. Lately, AMP-mimetic polymer-involved synergic therapy provides a superior alternative to combat MDR bacteria by distinct mechanisms. In this Review, we summarize the AMP-mimetic antimicrobial polymers involved in synergic therapy, particularly focusing on the different combinations between the polymers with commercially available antimicrobials, organic small molecule photosensitizers, inorganic nanomaterials, and nitric oxide.