As a key step in nylon‐6 synthesis, the Beckmann rearrangement is an ongoing target of catalytic studies that seek to improve the sustainability of polymer manufacture. Whilst solid‐acid catalysts (predominantly zeotypes) have proven effective for this transformation, the development of more active and selective systems demands an understanding of fundamental catalytic mechanisms. In this undertaking, in situ and operando characterization techniques can be informative, provided rigorous spectroscopic groundwork is in place. Thus, to facilitate mechanistic studies we present a detailed investigation of the vibrational spectra of cyclohexanone, cyclohexanone oxime, ϵ‐caprolactam and their D10‐isotopomers, in the solid state. Variable‐temperature infrared (150–300 K) and Raman (10–300 K) spectra are reported alongside inelastic neutron scattering data. Moreover, where key vibrational modes have been assigned with the aid of periodic density functional theory calculations, it has been possible to include hydrogen‐bonding interactions explicitly.