Orthopalladated complexes derived from (Z)-2-aryl-4-arylidene-5(4H)-oxazolones have been prepared by reaction of the oxazolone with palladium acetate in acidic medium. The reaction is regioselective, only the ortho C-H bond of the arylidene ring being activated, producing a six-membered ring. The scope and reaction conditions of the orthopalladation are dependent on the acidity of the solvent. In CF(3)CO(2)H a large number of oxazolones can be metalated under mild conditions. As acidity decreases a lesser number of oxazolones can be efficiently palladated and harsher conditions must be used to achieve similar yields. The C-H bond activation in acidic medium agrees with an ambiphilic mechanism, as determined from kinetic measurements at variable temperature and pressure for different oxazolones substituted at the arylidene ring. The mechanism has been confirmed by density functional theory (DFT) calculations, where the formation of the six-membered ring is shown to be favored from both a kinetic and a thermodynamic perspective. In addition, the dependence of the reaction rate on the acidity of the medium has also been accounted for via a fine-tuning between the C-H agostic precoordination and the proton abstraction reaction in the overall process occurring on coordinatively saturated [Pd(κ(N)-oxazolone)(RCO(2)H)(3)](2+).