The internal concentration polarization (ICP) of asymmetric osmotic membranes with support layers greatly reduced membrane water permeability, therefore compromising membrane performance. In this study, a series of free-standing symmetric hybrid forward osmosis (FO) membranes without experiencing ICP were fabricated by covalently linking metal−organic framework (MOF) nanofillers with a polymer matrix. Owing to the introduction of MOFs, which allow only water permeation but reject salts by steric hindrance, the prepared hybrid membranes could approach the empirical permeability-selectivity trade-off. The optimized hybrid membrane displayed an outstanding water/Na 2 SO 4 selectivity of ∼1208.4 L mol −1 , compared with that of conventional membranes of ∼375.6 L mol −1 . Additionally, the fabricated hybrid membranes showed excellent mechanical robustness, maintaining structural integrity during the long-term FO separation of high-salinity solution. This work provides an effective methodology to fabricate high-performance, symmetric MOF-based membranes for osmotic separation processes such as seawater desalination and water purification.