Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We show that quantum mechanics can be constructed as a classical field theory that correctly describes all basic quantum effects, by combining the Maxwell and Dirac equations. It is shown that for a self-consistent union of the Maxwell and Dirac equations into a unified classical field theory, it is necessary to introduce an additional short-range tensor field, which compensates the intrinsic electrostatic field of the electron wave inside the atom. For the combined Maxwell-Dirac field, the stress-energy tensor is constructed. We show that in the nonrelativistic limit this theory naturally transforms into the self-consistent Maxwell-Pauli theory and allows describing all basic quantum effects in the framework of classical field theory without any quantization.
We show that quantum mechanics can be constructed as a classical field theory that correctly describes all basic quantum effects, by combining the Maxwell and Dirac equations. It is shown that for a self-consistent union of the Maxwell and Dirac equations into a unified classical field theory, it is necessary to introduce an additional short-range tensor field, which compensates the intrinsic electrostatic field of the electron wave inside the atom. For the combined Maxwell-Dirac field, the stress-energy tensor is constructed. We show that in the nonrelativistic limit this theory naturally transforms into the self-consistent Maxwell-Pauli theory and allows describing all basic quantum effects in the framework of classical field theory without any quantization.
<abstract> <p>In the framework of the self-consistent Maxwell-Pauli theory, the non-linear Pauli equation is obtained. Stationary and nonstationary solutions of the nonlinear Pauli equation for the hydrogen atom are studied. We show that spontaneous emission and the related rearrangement of the internal structure of an atom, which is traditionally called a spontaneous transition, have a simple and natural description in the framework of classical field theory without any quantization and additional hypotheses. The behavior of the intrinsic magnetic moment (spin) of an EW in an external magnetic field is considered. We show that, according to the self-consistent Maxwell-Pauli theory, in a weak magnetic field, the intrinsic magnetic moment of an EW is always oriented parallel to the magnetic field strength vector, while in a strong magnetic field, depending on the initial orientation of the intrinsic magnetic moment, two orientations are realized: either parallel or antiparallel to the magnetic field strength vector.</p> </abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.