“…Quantum control and variational quantum eigensolver: Traditional optimal quantum control methods, often used in prior works, are GRAPE (Khaneja et al, 2005) and CRAB (Caneva et al, 2011). More recently, success has been seen by the combination of traditional methods with machine learning (Schäfer et al, 2020;Wang et al, 2020a;Sauvage and Mintert, 2019;Fösel et al, 2020;Nautrup et al, 2019;Albarrán-Arriagada et al, 2018;Sim et al, 2021;Wu et al, 2020a,b;Anand et al, 2020;Dalgaard et al, 2022), and especially reinforcement learning (Niu et al, 2019;Fösel et al, 2018;August and Hernández-Lobato, 2018;Porotti et al, 2019;Wauters et al, 2020;Yao et al, 2020a;Sung, 2020;Chen et al, 2013;Bukov, 2018;Sørdal and Bergli, 2019;Bolens and Heyl, 2020;Dalgaard et al, 2020;Metz and Bukov, 2022)). Among them, Variational quantum eigensolver or VQE (Cerezo et al, 2021a;Tilly et al, 2021) provides a general framework applicable on noisy intermediate-scale quantum (NISQ) devices (Preskill, 2018) to variationally tune the circuit parameters and improve the approximation.…”