Apolipoprotein B mRNA-editing enzyme-catalytic, polypeptide-like 3 (APOBEC3) enzymes are a family of single-stranded (ss)DNA cytosine deaminases that serve as a host restriction factors for retrotransposons and viruses that contain a ssDNA intermediate. While the APOBEC3 family was originally expanded to restrict endogenous retroelements, the majority of these targets are now inactivated and the family has been found to act on different targets, such as viral ssDNA as a mechanism of viral defense. Some of the family members also catalyze "offtarget" deaminations in human ssDNA and have been implicated in somatic mutagenesis that can lead to cancer.My PhD thesis research investigated the biochemical mechanisms underlying both the benefits and the risks of the A3 family of enzymes. The central hypothesis of this work is that A3 enzymes have evolved distinct biochemical mechanisms to deaminate ssDNA that differentiate A3 restriction of retroelements and retroviruses from A3-induced somatic mutagenesis.Therefore, we investigated the biochemical mechanisms the A3 enzymes utilize during restriction of Human Immunodeficiency Virus (HIV) in both deamination-dependent and deaminationindependent modes, as well as the unique mechanisms employed during mutation of genomic DNA. There are seven APOBEC3 members (A-H, excluding E) and of these, four members (A3D, A3F, A3G, A3H) have been identified to restrict HIV replication in CD4 T+ cells, and currently three members (A3A, A3B and A3H haplotype I) have been implicated in somatic mutagenesis.The APOBEC3 enzymes that restrict HIV replication function optimally in the absence of the HIV viral infectivity factor (Vif). Vif targets APOBEC3 for degradation via the proteasome in HIV infected cells. For APOBEC3s that are able to fortuitously escape Vif mediated degradation and become encapsidated, the enzymes can deaminate cytosines to form uracils in viral (-)DNA. Replication of (-)DNA to (+)DNA causes HIV-1 reverse transcriptase to incorporate adenines opposite uracils which creates C/G→T/A transition mutations. While restriction of HIV most commonly occurs through this deamination-dependent mechanism, APOBEC3s have also been identified to interfere with HIV reverse transcriptase processes in a deamination-independent manner, although this mechanism is secondary to the deaminationdependent mode. In order to restrict retroelements and viruses such as HIV, the A3 enzymes iii require an efficient processive ssDNA scanning mechanism that allows them to search for, and locate cytosines on ssDNA in the finite amount of time the substrate is available during formation of the double-stranded DNA provirus. To understand if this requirement was lost in A3 enzymes unable to restrict HIV, we studied A3C. Human A3C is not able to restrict HIV, in comparison to the more active gorilla and chimpanzee A3C orthologs that can restrict HIV, however an explanation for this difference was lacking. A polymorphism, S188I, in human A3C, which is found in less than 3% of the global population lead...