Self-distilled Transitive Instance Weighting for Denoised Distantly Supervised Relation Extraction
Xiangyu Lin,
Weijia Jia,
Zhiguo Gong
Abstract:The widespread existence of wrongly labeled instances is a challenge to distantly supervised relation extraction. Most of the previous works are trained in a bag-level setting to alleviate such noise. However, sentence-level training better utilizes the information than bag-level training, as long as combined with effective noise alleviation. In this work, we propose a novel Transitive Instance Weighting mechanism integrated with the self-distilled BERT backbone, utilizing information in the intermediate outpu… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.