Forecasting with limited data or sparse data are two main challenges needed to be addressed. Data should be representative of the system under consideration when forecasting with traditional neuro-fuzzy models (NFMs); the condition which is not met in case of forecasting with limited data. Also traditional NFMs cannot handle sparse rule base; the condition which is not suitable for modeling the low-frequency events.Generic Self-Evolving Takagi-Sugeno-Kang or GSETSK is a state-of-the-art NFM with specific capabilities due to its specific clustering, rule pruning and optimization mechanisms. The fully online property allows the model to be used independent of historical data. Also its dynamic expanding-shrinking structure makes its rule base dynamic, compact, up-to-date and interpretable. GSETSK was run fully-online form the 1 st sample onwards for two real time hydrologic forecasting problems in this study. The two commonly encountered problems; rainfall-runoff and flow routing modeling represent different modelling complexities. The data used belongs to two totally different datasets including a catchment in Sweden and Lower Mekong River in South-east Asia. In this research firstly the capability of GSETSK in forecasting with large datasets were critically examined. GSETSK was evaluated against traditional NFMs including the local NFM, DENFIS (Dynamic Evolving Neural-Fuzzy Inference System) and global NFM, ANFIS (Adaptive-Network-Based Fuzzy Inference System). Also the rule base dynamics of GSETSK were evaluated in relation to the complexity of the problem. Secondly the fully-online property of GSETSK was examined in forecasting with limited data e.g. forecasting in basins with limited data. Eventually for handling the sparse data, the Fuzzy Interpolative-Extrapolative Reasoning (FIER) was developed and imbedded in GSETSK.The overall findings of this research are as follows.