Microscopic origami figures can be created from thin film patterns using surface tension of liquids or residual stresses in thin films. The curvature of the structures, direction of bending, twisting, and folding of the patterns can be controlled by their shape, thickness, and elastic properties and by the strength of the residual stresses. Magnetic materials used for micro-and nano-origami structures play an essential role in many applications. Magnetic force due to applied magnetic field can be used for remote actuation of microrobots. It can also be used in targeted drug delivery to direct cages loaded with drugs or microswimmers to transport drugs to specific organs. Magnetoelastic properties of free-standing micro-origami patterns can serve for stress or magnetic field sensing. Also, the stress-induced anisotropy and magnetic shape anisotropy provide a convenient method of tuning magnetic properties by designing a shape of the microorigami figures instead of varying the composition of the films. Micro-origami figures can also serve as building blocks for two-and three-dimensional meta-materials with unique properties such as negative index of refraction. Micro-origami techniques provide a powerful method of self-assembly of magnetic circuits and integrating them with microelectro-mechanical systems or other functional devices.