Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Cellulose consists of a natural, rigid polymer that is widely used to improve the mechanical and water‐holding properties of hydrogels. However, its abundant hydroxyl groups make it highly absorbent to free water, leading to swelling behavior. This increased free water content will also decrease mechanical and adhesive performance. In this study, cellulose is successfully hydrophobically modified to reduce its absorption of free water. Gelatin is then cross‐linked with cellulose through a Schiff‐base reaction, resulting in increased bound water content. This significantly enhances resistance to swelling and permeability, and improves the freeze–thaw stability of the hydrogel. Due to its internal hydrophobicity, water molecules can quickly penetrate into the interior, reducing their residence time on the hydrogel surface. This allows the hydrogel to maintain high adhesion in natural environments, achieving an adhesion strength of up to 3.0 MPa on wood and bamboo‐based materials. The hydrogel can retain its adhesive properties even after prolonged exposure to a humid environment. Additionally, Na+ ions enhance the electrical conductivity and sensitivity of the hydrogel (gauge factor (GF) = 1.51), demonstrating its potential applications in flexible sensing.
Cellulose consists of a natural, rigid polymer that is widely used to improve the mechanical and water‐holding properties of hydrogels. However, its abundant hydroxyl groups make it highly absorbent to free water, leading to swelling behavior. This increased free water content will also decrease mechanical and adhesive performance. In this study, cellulose is successfully hydrophobically modified to reduce its absorption of free water. Gelatin is then cross‐linked with cellulose through a Schiff‐base reaction, resulting in increased bound water content. This significantly enhances resistance to swelling and permeability, and improves the freeze–thaw stability of the hydrogel. Due to its internal hydrophobicity, water molecules can quickly penetrate into the interior, reducing their residence time on the hydrogel surface. This allows the hydrogel to maintain high adhesion in natural environments, achieving an adhesion strength of up to 3.0 MPa on wood and bamboo‐based materials. The hydrogel can retain its adhesive properties even after prolonged exposure to a humid environment. Additionally, Na+ ions enhance the electrical conductivity and sensitivity of the hydrogel (gauge factor (GF) = 1.51), demonstrating its potential applications in flexible sensing.
Ionogels are considered as ideal candidates for constructing flexible electronics due to their superior electrical conductivity, flexibility, high thermal and electrochemical stability. However, it remains a great challenge to simultaneously achieve high sensitivity, repeated adhesion, good self‐healing, and biocompatibility through a straightforward strategy. Herein, inspired by nucleobase‐tackified strategy, a multifunctional adhesive ionogel is developed through one‐step radical polymerization of acrylated adenine/uracil (Aa/Ua) and acrylic acid (AA) monomers in sodium caseinate (SC) stabilized liquid metal dispersions. As a soft conductive filler, the incorporating of liquid metal not only improves the electrical conductivity, but also enhances the mechanical strength, satisfying the stretchable sensing application. The large amount of noncovalent interactions (hydrogen bonding, metal coordination, and ion‐dipole interactions) within the networks enable the ionogels to possess excellent stretchability, skin‐like softness, good self‐healing, and strong adhesion. Based on these desirable characteristics, the ionogel is suitable for wearable strain sensors to precisely detect diverse human movements under extreme environments. Moreover, the seamless adhesion with human skin allows the ionogel to function as bioelectrode patch for long‐term and high‐quality electrophysiological signal acquisition. This research provides a promising strategy for designing ionogels with tailored functionalities for wearable electronics that satisfy diverse application requirements.
Polypyrrole (PPy), as a highly conductive polymer, is limited in application due to the difficulty of uniform dispersion in hydrogels. To improve the compatibility of PPy with hydrogels, xanthan gum (XG) is employed as an emulsifier to homogeneously disperse pyrrole (Py) in water. XG is used as a template for in situ polymerization, and PPy is coated on XG to form nanoparticles (PX) with a core‐shell structure, enabling the nanoparticles to be dispersed uniformly in water for a long time. PX nanoparticles are combined with pure hydrophobic association hydrogel (HA) to form a HA/PX nanocomposite hydrogel. The HA/PX2% nanocomposite hydrogels exhibiting high toughness (equivalent to 5.1 MJ/m3) and high sensitivity (GF = 11.07 for 600%–1400% strain range) are prepared by combining dynamic hydrophobic cross‐linking sites, as well as hydrogen bonding between PX nanoparticles and the cross‐linked network. The test results show that the HA/PX nanocomposite hydrogel strain sensor has excellent strain sensing durability (800 cycles of 100% strain) and has the ability to accurately detect human joint movements for voice recognition and handwriting recognition. The nanocomposite hydrogel is a new method for the preparation of flexible electronic materials, which has great promise for application in the field of strain sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.