In this work, we present a new strategy to engineer novel self-healing ionomers, namely, zwitterionic polymers, and a comprehensive analysis of their mechanical, viscoelastic, and scratch-healing properties. This new method enables reproducible damage of the polymer surfaces, calculation of the scratch volume through tactile profile scans, and quantification of the self-healing efficiency. Based on the results of the scratch tests and complementary rheology, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and hardness tests, new trends, and structure-property relationships can be identified.