This study investigates the composition of smoke gases in forest and vegetation samples to draw conclusions about the actual smoke gas composition during wildfires. The focus is particularly on regions with extensive pine forests, like in Eastern Germany. The relevance of smoke gases is well illustrated by the example of wildfires in Québec, influencing air quality in New York, in 2023. By employing a modified DIN tube furnace, a bench‐scale test set‐up, the research emphasizes the examination of smoke composition from tree species and ground cover, prioritizing gases while disregarding particles. Key smoke gases are identified as CO, CO2, SO2, HCN, C3H4O (acrolein) and CH2O (formaldehyde) and their concentrations are compared with Acute Exposure Guideline Levels (AEGL) limits. Acknowledging the limitations of AEGL usage and the problem with direct quantitative comparison of toxicant concentrations (cf. ISO 29903‐1:2020), the study highlights variations in smoke composition across different samples. The results of the studies reveal a significant disparity in CO concentration between dry and fresh pine needles. Frequently, the AEGLs of key gases are exceeded significantly. The elemental analysis of the barks indicates distinct differences in composition, reflecting in the concentrations of smoke gases. The ratio of 1 mole of substance turnover to the identified key components will be used to determine input parameters for the subsequent numerical simulation.