The use of cannabinoids to treat fibrotic skin diseases is an emergent issue. Therefore, we aimed to evaluate systemic and skin endocannabinoid responses in the wound-healing process in humans. A prospective study was performed in 50 patients who underwent body-contouring surgery. Anandamide (N-arachidonoylethanolamine, AEA), 2-arachidonoylglycerol (2-AG), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were quantified using LC-MS/MS. Ten (20%) patients developed hypertrophic (HT) scars. No significant changes were observed between the normal (N) scar and HT scar groups in terms of plasma and skin endocannabinoids. Nevertheless, a positive correlation between plasma and skin AEA concentrations was found in the N group (r = 0.38, p = 0.015), which was absent in the HT group. Moreover, the AEA concentration was significantly lower in HT scar tissue than in normal scar tissue (0.77 ± 0.12 ng/g vs 1.15 ± 0.15 ng/g, p < 0.001). Interestingly, in all patients, the surgical intervention produced a time-dependent effect with a U shape for AEA, PEA and OEA plasma concentrations. In contrast, 2-AG plasma concentrations increased 5 days after surgery and were reduced and stabilized 3 months later. These results suggest crosstalk between systemic and local skin endocannabinoid systems during human wound healing. AEA appears to be the most likely candidate for this link, which is deficient in patients with HT scars. Endocannabinoids are the endogenous ligands for cannabinoid receptors CB1 and CB2, which are two G-protein coupled receptors that have a widespread distribution throughout the body 1,2. The most studied endocannabinoids are the arachidonic acid derivatives N-arachidonoylethanolamine (AEA) 3 and 2-arachidonoylglycerol (2-AG) 4. Palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are N-acylethanolamines (NAEs) that act by influencing AEA metabolism and binding to peroxisome proliferator-activated receptor alpha (PPAR-α) and to transient receptor potential cation channel subfamily V member 1 (TRPV1) 5-7. Endocannabinoids and related NAEs play an essential role in many physiological central and peripheral processes. These include emotional responses, cognition, memory, motor behaviour, immune function, feeding, energy consumption and metabolic regulation at the systemic and cellular levels 8-13. Endocannabinoids are present in human blood, and their concentrations are dynamic. Food consumption, obesity, exercise, sleep pattern, time of the day, stress, anxiety, inflammation and pain are known to modify the endocannabinoid concentrations in the circulation 14. They have also been quantified in other biological samples obtained from humans, including saliva 15 , hair 16 , semen 17 , breast milk, and amniotic fluid 18 .