2011
DOI: 10.1103/physrevd.83.065017
|View full text |Cite
|
Sign up to set email alerts
|

Self-interacting Elko dark matter with an axis of locality

Abstract: This communication is a natural and nontrivial continuation of the 2005 work of Ahluwalia and Grumiller on Elko. Here we report that Elko breaks Lorentz symmetry in a rather subtle and unexpected way by containing a `hidden' preferred direction. Along this preferred direction, a quantum field based on Elko enjoys locality. In the form reported here, Elko offers a mass dimension one fermionic dark matter with a quartic self-interaction and a preferred axis of locality. The locality result crucially depends on a… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

5
129
0

Year Published

2011
2011
2017
2017

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 85 publications
(134 citation statements)
references
References 38 publications
5
129
0
Order By: Relevance
“…Consequently we have (without the non-locality inducing extra term of all previous papers on the subject [1,2,37,38,41])…”
Section: Locality Structure Of the New Fieldmentioning
confidence: 99%
See 2 more Smart Citations
“…Consequently we have (without the non-locality inducing extra term of all previous papers on the subject [1,2,37,38,41])…”
Section: Locality Structure Of the New Fieldmentioning
confidence: 99%
“…[36], and refined in Ref. [37,38]. It can now be more systematically understood by observing that those results correspond to the Ξ(p µ ) of the second example considered above (and given in equation (4.15)).…”
Section: The Dual For λ(P µ )mentioning
confidence: 99%
See 1 more Smart Citation
“…These theories have a preferred axis [8,10,11], that breaks Lorentz invariance by breaking rotational symmetry. Along such a preferred axis, the ELKO field enjoys locality [12]. It is intriguing that cosmological observations also show some evidence for a preferred axis in the Universe [13,14].…”
Section: Introductionmentioning
confidence: 99%
“…The very definition of ELKO and their dynamics are the basis for the explanation of some fundamental problems in cosmology and hence the reason for which ELKOs are so important for cosmology's standard model: the idea of a privileged direction arising from a preferred axis ( [5], [6]) could be explained by their spin structure ( [7], [8]); the curves of rotation of galaxies and the inflationary expansion of the universe ( [9], [10], [11]) could be described by their dynamics ( [12], [13], [14], [15], [16], [17]). Some of these results have been reviewed while others have been extended and a comprehensive list of the results is accounted in the literature ( [18], [19], [20], [21], [22], [23], [24], [25], [26]).…”
Section: Introductionmentioning
confidence: 99%