Abstract:With the proliferation of machine learning applications in the real world, the demand for explaining machine learning predictions continues to grow especially in high-stakes fields. Recent studies have found that interpretation methods can be sensitive and unreliable, where the interpretations can be disturbed by perturbations or transformations of input data. To address this issue, we propose to learn robust interpretations through transformation equivariant regularization in a self-interpretable model. The r… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.