To accurately extract absolute distance information from a self-mixing interferometry (SMI) signal, in this paper we propose an approach based on a particle swarm optimization (PSO) algorithm instead of frequency estimation for absolute distance. The algorithm is utilized to search for the global minimum of the fitness function that is established from the self-mixing signal to find out the actual distance. A resolution superior to 25 μm in the range from 3 to 20 cm is obtained by experimental measurement, and the results demonstrate the superiority of the proposed approach in comparison with interpolated FFT. The influence of different external feedback strength parameters and different inertia weights in the algorithm is discussed as well.