Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the rapidly evolving digital world, blockchain technology is becoming the foundation for numerous applications, ranging from financial services to supply chain management. As the usage of blockchain is becoming more prevalent, the energy-intensive nature of this technology has raised concerns about its long-term sustainability and environmental footprint. To address this challenge, we explore the potential of Peer-to-Peer Federated Learning (P2P-FL), a distributed machine learning approach that allows multiple nodes to collaborate without sharing raw data. We present a novel integration of P2P-FL with blockchain technology, aimed at enhancing the sustainability and efficiency of blockchain networks. The basic idea of our approach is the use of distributed learning mechanisms to find the optimal performance parameters of blockchain without relying on centralized control. These parameters are then used by a load-balancing mechanism that prioritizes energy efficiency to distribute loads on different blockchains. Furthermore, we formulate a non-cooperative game theory model to align the individual node strategies with the collective objective of energy optimization, ensuring a balance between self-interest and overall network performance. Our work is exemplified through a case study in the renewable energy sector, demonstrating the application of our model in creating an efficient marketplace for energy trading. The experimentation and results indicate a significant improvement in the execution times and energy consumption of blockchain networks. Therefore, the overall sustainability of the network is enhanced, making our framework practical and applicable in real-world scenarios.
In the rapidly evolving digital world, blockchain technology is becoming the foundation for numerous applications, ranging from financial services to supply chain management. As the usage of blockchain is becoming more prevalent, the energy-intensive nature of this technology has raised concerns about its long-term sustainability and environmental footprint. To address this challenge, we explore the potential of Peer-to-Peer Federated Learning (P2P-FL), a distributed machine learning approach that allows multiple nodes to collaborate without sharing raw data. We present a novel integration of P2P-FL with blockchain technology, aimed at enhancing the sustainability and efficiency of blockchain networks. The basic idea of our approach is the use of distributed learning mechanisms to find the optimal performance parameters of blockchain without relying on centralized control. These parameters are then used by a load-balancing mechanism that prioritizes energy efficiency to distribute loads on different blockchains. Furthermore, we formulate a non-cooperative game theory model to align the individual node strategies with the collective objective of energy optimization, ensuring a balance between self-interest and overall network performance. Our work is exemplified through a case study in the renewable energy sector, demonstrating the application of our model in creating an efficient marketplace for energy trading. The experimentation and results indicate a significant improvement in the execution times and energy consumption of blockchain networks. Therefore, the overall sustainability of the network is enhanced, making our framework practical and applicable in real-world scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.