Biological macromolecules are homochiral, composed of sequences of stereocenters possessing the same repeated absolute configuration. This chapter addresses the mechanism of homochiral selection in polypeptides. In particular, the relationship between the stereochemistry (L or D) of structurally distinct α-amino acids is explored. Through functionalization of Tyr-Xaa dipeptides with self-assembling dendrons, the effect of stereochemical sequence of the dipeptide on the thermodynamics of self-assembly and the resulting structural features can be quantified. The dendritic dipeptide approach effectively isolates the stereochemical information of the shortest sequence of stereochemical information possible in polypeptide, while simultaneously allowing for dendron driven tertiary and quaternary structure formation and subsequent transfer of chiral information from the dipeptide to the dendritic sheath. This approach elucidates a mechanism of selecting a homochiral relationship between dissimilar but neighboring α-amino acids through thermodynamic preference for homochirality in solution-phase and bulk supramolecular helical polymerization.