The Department of Information Science is one of six departments that make up the School of Business at the University of Otago. The department offers courses of study leading to a major in Information Science within the BCom, BA and BSc degrees. In addition to undergraduate teaching, the department is also strongly involved in postgraduate research programmes leading to MCom, MA, MSc and PhD degrees. Research projects in spatial information processing, connectionist-based information systems, software engineering and software development, information engineering and database, software metrics, distributed information systems, multimedia information systems and information systems security are particularly well supported.The views expressed in this paper are not necessarily those of the department as a whole. The accuracy of the information presented in this paper is the sole responsibility of the authors.
CopyrightCopyright remains with the authors. Permission to copy for research or teaching purposes is granted on the condition that the authors and the Series are given due acknowledgment. Reproduction in any form for purposes other than research or teaching is forbidden unless prior written permission has been obtained from the authors.
CorrespondenceThis paper represents work to date and may not necessarily form the basis for the authors' final conclusions relating to this topic. It is likely, however, that the paper will appear in some form in a journal or in conference proceedings in the near future. The authors would be pleased to receive correspondence in connection with any of the issues raised in this paper, or for subsequent publication details. Please write directly to the authors at the address provided below. (Details of final journal/conference publication venues for these papers are also provided on the Department's publications web pages: http://www.otago.ac.nz/informationscience/pubs/). Any other correspondence concerning the Series should be sent to the DPS Coordinator. Abstract Progresses made on content-based image retrieval has reactivated the research on image analysis and similarity-based approaches have been investigated to assess the similarity between images. In this paper, the content-based approach is extended towards the problem of image collection summarization and comparison. For these purposes we propose to carry out clustering analysis on visual features using self-organizing maps, and then evaluate their similarity using a few dissimilarity measures implemented on the feature maps. The effectiveness of these dissimilarity measures is then examined with an empirical study.