2019
DOI: 10.48550/arxiv.1910.03244
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Self-Paced Deep Regression Forests for Facial Age Estimation

Abstract: Facial age estimation is an important and challenging problem in computer vision. Existing approaches usually employ deep neural networks (DNNs) to fit the mapping from facial features to age, even though there exist some noisy and confusing samples. We argue that it is more desirable to distinguish noisy and confusing facial images from regular ones, and alleviate the interference arising from them. To this end, we propose self-paced deep regression forests (SP-DRFs) -a gradual learning DNNs framework for age… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 33 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?