Abstract:Facial age estimation is an important and challenging problem in computer vision. Existing approaches usually employ deep neural networks (DNNs) to fit the mapping from facial features to age, even though there exist some noisy and confusing samples. We argue that it is more desirable to distinguish noisy and confusing facial images from regular ones, and alleviate the interference arising from them. To this end, we propose self-paced deep regression forests (SP-DRFs) -a gradual learning DNNs framework for age… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.