“…Thanks to their flexibility and ease of integration into curved surfaces like human body, flexible pressure sensors (FPS) have received tremendous attentions and show great potentials for applications in wearable devices [1, 2], electronic skins [3, 4], biomedical systems [5], and human motion detection [6–9]; lots of structures and mechanisms such as field effect transistor [10, 11], capacitor [2, 12], piezoelectric effect [13–16], and piezoresistance effect [17–19] have been proposed to realize FPS; among them, the capacitive FPS becomes increasingly attractive due to its simple structure [20], large dynamic range [21], and good stability [22]. In terms of materials used in FPS, polydimethylsiloxane (PDMS) is an excellent material due to its good flexibility, biomedical compliance with human tissue, and dielectric property, and it is accordingly often used as a structural material in FPS as well as other flexible sensors [23–25]; in capacitive FPS, PDMS was often used as the dielectric layer [20, 26] and electrode substrate [2, 21]. When it comes to the electric conducting layer in FPS, silver nanowires (AgNWs), which have large potential and been widely used in flexible electronics such as solar cells [27–32] and film heaters [33, 34] due to their excellent electrical, optical, and mechanical properties, were often used together with PDMS; for example, Chen et al [35] prepared silver nanowire (AgNWs)/(PDMS) composite films by partly embedding AgNWs in the PDMS layer to create rough surface, and the fabricated sensor device was able to achieve sensitivity three times of that using common metal film electrodes.…”