2015
DOI: 10.1103/physreve.92.042305
|View full text |Cite
|
Sign up to set email alerts
|

Self-replication with magnetic dipolar colloids

Abstract: Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and pre-programmed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to dr… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
6
0
1

Year Published

2016
2016
2024
2024

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 14 publications
(7 citation statements)
references
References 34 publications
0
6
0
1
Order By: Relevance
“…The emergence of life from non-living matter is one of the greatest mysteries of fundamental science In addition, the search for artificial self-replicating nano-and micro-scale systems is an exciting field with potential engineering applications [6,7,8,9]. The central challenge in both of these fields is to come up with a simple physically-realizable self-replicating system obeying the laws of thermodynamics, yet ultimately capable of Darwinian evolution when exposed to non-equilibrium driving forces.…”
Section: Introductionmentioning
confidence: 99%
“…The emergence of life from non-living matter is one of the greatest mysteries of fundamental science In addition, the search for artificial self-replicating nano-and micro-scale systems is an exciting field with potential engineering applications [6,7,8,9]. The central challenge in both of these fields is to come up with a simple physically-realizable self-replicating system obeying the laws of thermodynamics, yet ultimately capable of Darwinian evolution when exposed to non-equilibrium driving forces.…”
Section: Introductionmentioning
confidence: 99%
“…23,24 Examples of the complex and sometimes unexpected structures obtained with anisotropic magnetic colloids have been recently reported by various groups both in experiments [25][26][27][28][29] and numerical simulations. [30][31][32][33][34][35][36][37] In this article we study the dynamics of overdamped ferromagnetic ellipsoids dispersed in water and subjected to static or oscillating magnetic fields. These anisotropic particles present a permanent magnetic moment perpendicular to their long axis, and they readily assemble into elongated structures due to dipolar forces.…”
Section: Introductionmentioning
confidence: 99%
“…記録材料 (Verdes et al, 2006)の分野への応用に加え,近年では医用工学 (Häfeli et al, 1997)や環境資源工学 (Girginova et al, 2010)の分野への応用展開が活発になされるに至っている.医用工学や環境資源工学の分野で は,目的に合わせた高次機能性磁性粒子の創製やその凝集構造や運動の制御法の構築が主な研究課題となってい る.医用工学分野での応用に際しては,薬剤を包含した機能性粒子をガン・腫瘍部への誘導のための drug delivery システムの構築 (Shapiro, 2009) , 磁気モーメントの緩和現象に基づいた磁気温熱効果の制御法の構築 (Rosensweig, 2002, Obaidat et al, 2015)などがある.環境資源工学での応用に際しては,物質の吸着現象の解明と磁場勾配によ る回収技術の構築 (Konicki et al, 2017)などが必要となる. 磁性粒子や非磁性粒子の高次機能化を計るには,物質の表面改質技術が必要となる.物質の表面改質に関する 研究は非常に数多くなされているが,ここでは物理的な観点から,表面改質技術の磁性粒子への応用に関係する 研究について簡単に言及する.磁性球状粒子を対象とした研究として,2 次元平面上での凝集形態や相転移現象 の解明と印加磁場の影響を検討した研究 (Duncan and Camp, 2004, Dempster et al, 2015, Pham et al, 2017, Theis-Bröhl et al, 2015などがある.このような物質表面での磁性粒子の凝集構造・相転移・配向特性に関する研 究は,球状粒子から,軸対称粒子の代表的な形状である棒状粒子 (Gil-Villegas et al, 1997, Domingos et al, 2017, Aoshima and Satoh, 2005や扁平粒子 (Satoh and Sakuda, 2010)に範囲を広げて,活発に遂行されてきている.さ らに最近では,キューブ状磁性粒子を対象に,磁場の強さの変化に対する凝集構造の相転移の研究もされている (Satoh andOkada, 2017, Okada andSatoh, 2018) . キューブ状ヘマタイト粒子の場合には,対角線に近い方向で磁化されていると考えられる (Rossi et al, 2011, Meijer et al, 2012) .キューブ状磁性粒子の物質表面上の単層の凝集構造の研究により,ある条件下では面接触に よる凝集体を形成する傾向が非常に強いことがわかっている (Rossi et al, 2011, Meijer et al, 2012, Linse, 2015, Donaldson and Kantorovich, 2015, Satoh and Okada, 2017 . 上述の研究例でもわかるように,物質表面上での磁性粒子の凝集形態や内部構造を制御するためには,外部磁 場を効果的に活用する方法が有効である.さらに一歩進めて,磁性粒子を帯電させ,電場と磁場により,より高 度に物質表面上の磁性粒子の内部構造を制御しようとするアプローチも非常に可能性があるものと期待される. 帯電した非磁性粒子の電極板表面への付着特性や層構造に関する研究は,これまで多くの研究者により非常に活 発に研究がなされている.例えば,電気力により電極板表面に付着させ,所望の層構造を発生させようとする研 究 (Oćwieja et al, 2017) , 帯電した棒状粒子の 2 次元系での凝集現象と相転移現象の研究 (Rutkowski et al, 2016) , 帯電した粒子の運動を電場により制御することで電極表面に付着させ,不純物質を取り除こうとする環境工学的 な研究 (Choi et al, 2001)などが挙げられる.これらの現象解明もしくは技術構築を達成させるために,平板電 極により発生した電場中における帯電粒子の動的な挙動の解明が精力的になされてきている (Watanabe et al, 2005…”
Section: 緒 言 磁性粒子を母液に懸濁して機能性を持たせた磁性サスペンションは,従来の流体工学(Wereley 2013)や磁気unclassified