Mountaintop removal mining (MTM) is a widely used approach to surface coal mining in the US Appalachian region whereby large volumes of coal overburden are excavated using explosives, removed, and transferred to nearby drainages below MTM operations. To investigate the air quality impact of MTM, the geochemical characteristics of atmospheric particulate matter (PM) from five surface mining sites in south central West Virginia, USA, and five in-state study control sites having only underground coal mining or no coal mining whatsoever were determined and compared. Epidemiologic studies show increased rates of cancer, respiratory disease, cardiovascular disease, and overall mortality in Appalachian surface mining areas compared to Appalachian non-mining areas. In the present study, 24-h coarse (>2.5 µm) and fine (≤2.5 µm) PM samples were collected from two surface mining sites in June 2011 showed pronounced enrichment in elements having a crustal affinity (Ga, Al, Ge, Rb, La, Ce) contributed by local sources, relative to controls. Follow-up sampling in August 2011 lacked this enrichment, suggesting that PM input from local sources is intermittent. Using passive samplers, dry deposition total PM elemental fluxes calculated for three surface mining sites over multi-day intervals between May and August 2012 were 5.8 ± 1.5 times higher for crustal elements than at controls. Scanning microscopy of 2,249 particles showed that primary aluminosilicate PM was prevalent at surface mining sites compared to secondary PM at controls. Additional testing is needed to establish any link between input of lithogenic PM and disease rates in the study area.