Self-Supervised Adaptive Learning Algorithm for Multi-Horizon Electricity Price Forecasting
Muhammad Ahsan Zamee,
Yeongsang Lee,
Dongjun Won
Abstract:Forecasting accuracy of electricity prices is crucial to the optimal operation of the electricity market, as improper forecasting can lead to inefficiencies, increased costs, and market instability. Thus, it is highly desired to develop a robust electricity price forecasting framework. The development of an optimal forecasting model depends on the proper choice of exogenous variables, and as the impact/characteristics of the input variables may change over time, thus the choice of appropriate external variable… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.