2022
DOI: 10.48550/arxiv.2205.15688
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Self-Supervised Learning for Building Damage Assessment from Large-scale xBD Satellite Imagery Benchmark Datasets

Abstract: In the field of post-disaster assessment, for timely and accurate rescue and localization after a disaster, people need to know the location of damaged buildings. In deep learning, some scholars have proposed methods to make automatic and highly accurate building damage assessments by remote sensing images, which are proved to be more efficient than assessment by domain experts. However, due to the lack of a large amount of labeled data, these kinds of tasks can suffer from being able to do an accurate assessm… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?