2023
DOI: 10.48550/arxiv.2303.10971
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Self-Supervised Learning for Multimodal Non-Rigid 3D Shape Matching

Abstract: The matching of 3D shapes has been extensively studied for shapes represented as surface meshes, as well as for shapes represented as point clouds. While point clouds are a common representation of raw real-world 3D data (e.g. from laser scanners), meshes encode rich and expressive topological information, but their creation typically requires some form of (often manual) curation. In turn, methods that purely rely on point clouds are unable to meet the matching quality of mesh-based methods that utilise the ad… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 54 publications
0
0
0
Order By: Relevance