2023
DOI: 10.5334/jcaa.110
|View full text |Cite
|
Sign up to set email alerts
|

Self-Supervised Learning for Semantic Segmentation of Archaeological Monuments in DTMs

Bashir Kazimi,
Monika Sester

Abstract: Deep learning models need a lot of labeled data to work well. In this study, we use a Self-Supervised Learning (SSL) method for semantic segmentation of archaeological monuments in Digital Terrain Models (DTMs). This method first uses unlabeled data to pretrain a model (pretext task), and then fine-tunes it with a small labeled dataset (downstream task). We use unlabeled DTMs and Relief Visualizations (RVs) to train an encoder-decoder and a Generative Adversarial Network (GAN) in the pretext task and an annota… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 43 publications
0
0
0
Order By: Relevance