Self-supervised learning waveform inversion for seismic forward prospecting in tunnels: A case study in Pearl River Delta Water Resources Allocation Project in China
Yuxiao Ren,
Jiansen Wang,
Qingyang Wang
et al.
Abstract:Tunnel and underground engineering construction often encounter unfavorable geology, leading to disasters such as water and mud inrushes, landslides, etc. In order to prevent geological hazards, it is important to look ahead and predict the location and distribution of adverse geology ahead of the tunnel face. This process is known as seismic forward-prospecting in tunnels, and it typically requires an accurate calculation of velocity. Seismic waveform inversion methods based on deep learning have demonstrated… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.