2022
DOI: 10.1007/978-3-031-23443-9_7
|View full text |Cite
|
Sign up to set email alerts
|

Self-supervised Motion Descriptor for Cardiac Phase Detection in 4D CMR Based on Discrete Vector Field Estimations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
14
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1
1

Relationship

3
2

Authors

Journals

citations
Cited by 5 publications
(15 citation statements)
references
References 20 publications
0
14
0
1
Order By: Relevance
“…Figure 2 ) identifies cardiac key frames based on contraction and relaxation curves (cf. Section 5.3 ), as shown in previous work [ 32 ]. The derived key frame specific strain (ED-MS, MS-ED, ED-PF, PF-MD; explained in Section 5.2 ) enables the comparison of temporally aligned ( ED2K and K2K ) deformation values (cf.…”
Section: Resultsmentioning
confidence: 67%
See 3 more Smart Citations
“…Figure 2 ) identifies cardiac key frames based on contraction and relaxation curves (cf. Section 5.3 ), as shown in previous work [ 32 ]. The derived key frame specific strain (ED-MS, MS-ED, ED-PF, PF-MD; explained in Section 5.2 ) enables the comparison of temporally aligned ( ED2K and K2K ) deformation values (cf.…”
Section: Resultsmentioning
confidence: 67%
“…Figure 4 b ) and section 5.3 ). Mostly, the best parameters from the original publications [ 32 , 36 ] were used whenever possible to avoid dataset-driven overfitting of the models. In the Supplemental Material, the main parameters of both models are provided (cf.…”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…Besonders bei der Erkennung der Herzphasen [15] und der Konturierung der MRT-Bilder kann die KI erheblich unterstützen. Die traditionell manuelle Segmentierung von MRT-Bildern ist mit einer Bearbeitungszeit von bis zu 30 Minuten pro Patienten äußerst zeit-und ressourcenaufwendig.…”
Section: Was Ist Wichtig?unclassified