2021
DOI: 10.48550/arxiv.2108.07582
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Self-Supervised Pretraining and Controlled Augmentation Improve Rare Wildlife Recognition in UAV Images

Abstract: Automated animal censuses with aerial imagery are a vital ingredient towards wildlife conservation. Recent models are generally based on deep learning and thus require vast amounts of training data. Due to their scarcity and minuscule size, annotating animals in aerial imagery is a highly tedious process. In this project, we present a methodology to reduce the amount of required training data by resorting to self-supervised pretraining. In detail, we examine a combination of recent contrastive learning methodo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?