Abstract:The representation learning of speech, without textual resources, is an area of significant interest for many low resource speech applications. In this paper, we describe an approach to self-supervised representation learning from raw audio using a hidden unit clustering (HUC) framework. The input to the model consists of audio samples that are windowed and processed with 1-D convolutional layers. The learned "time-frequency" representations from the convolutional neural network (CNN) module are further proces… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.